First Principles Free-Energy Theory of Solvation with Atomic Scale Liquid Structure

نویسندگان

  • Kendra Letchworth-Weaver
  • Ravishankar Sundararaman
  • T. A. Arias
چکیده

Quantum-chemical processes in liquid environments impact broad areas of science, from molecular biology to geology to electrochemistry. While densityfunctional theory (DFT) has enabled efficient quantum-mechanical calculations which profoundly impact understanding of atomic-scale phenomena, realistic description of the liquid remains a challenge. Here, we present an approach based on joint density-functional theory (JDFT) which addresses this challenge by leveraging the DFT approach not only for the quantum mechanics of the electrons in a solute, but also simultaneously for the statistical mechanics of the molecules in a surrounding equilibrium liquid solvent. Specifically, we develop a new universal description for the interaction of electrons with an arbitrary liquid, providing the missing link to finally transform JDFT into a practical tool for the realistic description of chemical processes in solution. This approach predicts accurate solvation free energies and surrounding atomic-scale liquid structure for molecules and surfaces in multiple sol-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature and length scale dependence of solvophobic solvation in a single-site water-like liquid.

The temperature and length scale dependence of solvation properties of spherical hard solvophobic solutes is investigated in the Jagla liquid, a simple liquid that consists of particles interacting via a spherically symmetric potential combining a hard core repulsion and a longer ranged soft core interaction, yet exhibits water-like anomalies. The results are compared with equivalent calculatio...

متن کامل

Soft-Sphere Continuum Solvation in Electronic-Structure Calculations.

We present an implicit solvation approach where the interface between the quantum-mechanical solute and the surrounding environment is described by a fully continuous permittivity built up with atomic-centered "soft" spheres. This approach combines many of the advantages of the self-consistent continuum solvation model in handling solutes and surfaces in contact with complex dielectric environm...

متن کامل

Interaction of Pyrimidine Nucleobases with Silicon Carbide Nanotube: Effect of Functionalization on Stability and Solvation

This study is about Complexes of Li doped silicon carbide nanotube with Thymine and Cytosine ingas phase and aqueous solutions. Li doped silicon carbide nanotube and its pyrimidine nucleobasecompounds were first modeled by Quantum mechanical calculations in gas phase and in water.Calculated binding energies indicated the stronger ability of thymine to functionalize silicon carbidenanotube than ...

متن کامل

Free Energies of Solvation with Surface, Volume, and Local Electrostatic Effects and Atomic Surface Tensions to Represent the First Solvation Shell.

Building on the SVPE (surface and volume polarization for electrostatics) model for electrostatic contributions to the free energy of solvation with explicit consideration of both surface and volume polarization effects, on the SMx approach to including first-solvation-shell contributions, and on the linear relationship between the electric field and short-range electrostatic contributions foun...

متن کامل

Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model

We have developed a general predictive method for vapor pressures and enthalpies of vaporization based on the calculation of the solvation free energy that consists of three components; the electrostatic, dispersion, and cavity formation contributions. The electrostatic contribution is determined using the quantum mechanical COSMO solvation model. Thermodynamic perturbation theory for hard-core...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017